Unit Transfer Method Primary 5

Before \& After
Lesson 1: Single Unchanged

Website: www.mathsheuristics.com
Email: enquiry@mathsheuristics.com
Support: www.facebook.com/groups/mathsheuristics

Contents

Introduction

- Before You Begin
Part 1 Before and After Scenarios
Lesson 1: \quad Single Unchanged Quantities
Lesson 2: Total Unchanged Quantities
Lesson 3: Difference Unchanged Quantities
Lesson 4: Total Unchanged Quantities
Lesson 5: Revision (I)

All rights reserved.
No parts of this publication may be reproduced, stored in any retrieval system, or transmitted via any retrieval system or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

No parts of this publication may be used in the conducting of classes, commercial or otherwise, without the prior permission of the copyright owner.

BEFORE YOU BEGIN

(Whole Number) Units Allocation. W, F, D, P, R

1. \quad Tom has $\frac{5}{1}$ times as many stickers as Ma ry

2. $\quad \begin{aligned} & \text { Tom has } \frac{5}{1} \text { times more stickers than Mary }\end{aligned}$
$\left.\begin{array}{l}\text { Tom } \rightarrow \quad\left(\begin{array}{lll}6 &) \text { units } \\ \text { Mary }\end{array} \text { (} 1,\right.\end{array}\right)$ units

(Fraction)

3. Tom gave away $\frac{3}{5}$ of his stickers.

Total $\rightarrow \quad(S)$ units
Gave $\rightarrow \quad(3)$ units

Left $\rightarrow(2)$ units
4. Tom's stickers increased by $\frac{3}{5}$.

Before	\rightarrow	$\left(\begin{array}{c}5\end{array}\right)$ units	
Change	\rightarrow	$(+3)$	units
After	\rightarrow	(8)	

5. Tom's stickers decreased by $\frac{3}{5}$.

6. \quad Tom has $4 \frac{3}{5}$ as many stickers as Mary. $4 \frac{3}{5}=\frac{23}{5}$
Tom $\rightarrow \quad(23)$ units
Mary $\rightarrow \quad\left(\begin{array}{c}2\end{array}\right)$ units
7. 3
8. Tom has $\frac{3}{5}$ as many stickers as Mary.

Tom $\rightarrow \quad\left(\begin{array}{ll} \\)\end{array}\right)$ units
Mary $\rightarrow \quad(\mathrm{S})$ units

Before You Begin

8. $\quad 5+3 \mathrm{Tom}^{2}$ has $\frac{3}{5}$ more stickers thag $\begin{gathered}5 \\ \text { Mary. }\end{gathered}$

Tom $\rightarrow(8)$ units
Mary $\rightarrow \quad(5)$ units
9. $5 \quad-3$ Tom has $\left(\frac{3}{5}\right.$ fewer stickers than Mary.

Tom $\rightarrow \quad\left(\begin{array}{lll} \\ \text { Mary } \\ \rightarrow & (5) &) \text { units }\end{array}\right.$ units

Before You Begin * Convert Decimals \& percentages into fractions first *
(Decimal)
10. Tom $\frac{3}{5}$

$$
\text { Total } \rightarrow \quad(5) \text { units }
$$

$$
\begin{aligned}
0.6 & =6 \text { tenths } \\
& =\frac{6}{10} \div 2 \\
& =\frac{3}{5}
\end{aligned}
$$

11. Tom's stickers increased by 2.6 times.

| Before | \rightarrow | $\left(\begin{array}{c}5\end{array}\right)$ units |
| :--- | :--- | :--- | :--- |
| Change | \rightarrow | $(+3)$ units |
| After | \rightarrow | $(8))$ units |

12. Tom's stickers decreased by $\frac{3}{5} .8$ times.

| Before | \rightarrow | $\left(\begin{array}{c}5\end{array}\right)$ units |
| :--- | :--- | :---: | :--- |
| Change | \rightarrow | (-3) |
| After | \rightarrow | (2) units |
| | | |

3 $\frac{3}{2}$
(2) units
13. Tom has $\frac{2}{2}$. times as many stickers as Mary. $\quad 1.5=1 \frac{5}{10 \div 5}=1 \frac{1}{2}=\frac{3}{2}$
Tom $\rightarrow \quad\left(\begin{array}{ll}3 &) \text { units }\end{array}\right.$

Mary $\rightarrow \quad(2)$ units
14. Tom has ρ_{0}. times as many stickers as Mary.
$\begin{array}{llll}\text { Tom } \\ \text { Mary } & \rightarrow & \left(\begin{array}{ll}3 &) \text { units }\end{array}\right) \text { units }\end{array}$
$5+3>\frac{3}{5}$
$\overbrace{}^{2} 5$
15. Tom has 0.6 times more stickers than Mary.

$$
\begin{array}{llll}
\text { Tom } \rightarrow & \left(\begin{array}{ll}
8 &) \text { units } \\
\text { Mary } & \rightarrow \\
(5) &) \text { units }
\end{array}\right.
\end{array}
$$

$5-3<\frac{3}{5} \xrightarrow{5}$
16. Tom has 0.6 times fewer stickers than Mary.

```
Tom }->\mathrm{ ( 2 ) units
Mary }->\mathrm{ ( 5 ) units
```

17. Tom gave away 68% of his stickers.

$$
60 \%=\frac{60}{100} \div 20
$$

18. Tom's stickers increased by 60%.

Before	\rightarrow	$\left(\begin{array}{r}5\end{array}\right)$ units	
Change	\rightarrow	$(+3$	$)$ units
After	\rightarrow	(8)	units

19. Tom's stickers decreased by 60%.

| Before | \rightarrow | (5) |
| :--- | :--- | :---: | :--- |
| Change | \rightarrow | (-3) units |
| After | \rightarrow | $(2))$ units |

20. 3 2 2
. $150 \%=\frac{150}{100} \div 50$

21. ${ }^{3}$ Tom has 60% as many stickers as Mary.
Tom $\rightarrow \quad\left(\begin{array}{lll}\rightarrow\end{array}\right)$ units
Mary
$\rightarrow$$\left(\begin{array}{ll}5 &) \text { units }\end{array}\right.$
22. Tom has 60% more stickers than Mary.

23. Tom has 60% fewer stickers than Mary.

24.

LESSON 1: SINGLE UNCHANGED QUANTITIES

DEFINITION

One of the given quantities remains unchanged.
For instance,
Before: Ali has $\$ 10$ and Ben has $\$ 35$.

Change: Ali donates $\$ 3$ to a charity.
$\begin{array}{lll}\text { After: } & \begin{array}{ll}\text { Does Ali's money Before and After changes? } \\ & \text { Does Ben's money Before and After changes? }\end{array} \text { (Yes/No) }\end{array}$

	Ali	Ben
Before	10	35
Change	-3	
After	7	35

GUIDED EXAMPLE 1 * make them the same is the name of the game * (After Abel spent \$80,] Change
Beñny had 5 times as much money as Abel.] After How much money did each of them have at first?

1) Model

$$
80 \div 4=20
$$

$$
5 \times 20=100
$$

Benny unchanged

$$
\begin{aligned}
5 u-l_{u} & =80 \\
4 u & =80 \\
1 u & =80 \div 4 \\
& =20 \\
5 u & =5 \times 20 \\
& =100
\end{aligned}
$$

Ans: $\$ 100$

GUIDED EXAMPLE 2
[At first, Ismail had a total of 167 stamps from Singapore and Malaysia.] Before After his father gave him 183 stamps from Singapore,] Change (the number of stamps from Malaysia was $\frac{1}{9}$ the number of stamps from singapore. 7 Affer How many stamps from Singapore did he have at first?

	S	M	Total
B	(?)		167
C	+183		+183
A	$9 u \times 35$	14×35	$10 u \times 35$
315.2	352	350	

* Total increases by same no. as SG StampSt Work backwards

$$
315-183=132
$$

$$
\begin{aligned}
10 \times- & =350 \\
- & =350 \div 10 \\
& =35
\end{aligned}
$$

GUIDED EXAMPLE 3

There are blue and red pens in a box.
[The number of red pens is $\frac{6}{7}$ of the blue pens.] Before 6 more blue pens are added into the box.] Change [The number of red ${ }^{2}$ pens is now $\frac{2}{3}$ of the blue pens. ${ }_{3}$ After Find the number of red pens.

$$
\begin{aligned}
9 u-7 u & =6 \\
2 u & =6 \\
1 u & =6 \div 2 \\
& =3 \\
6 u & =6 \times 3 \\
& =18
\end{aligned}
$$

Ans: 18

GUIDED EXAMPLE 4
[Marcus had twice as many beads as Kate at first.] Before [After Kate lost 12 of her beads,] Change
MMarcus had 3 times as many beads as Kate.] After How many beads did they have altogether at first?

$$
\begin{aligned}
3 u-2 u & =12 \\
1 u & =12 \\
9 u & =9 \times 12 \\
& =108
\end{aligned}
$$

Ans: 108

GUIDED EXAMPLE 5

[At a carnival, the ratio of the number of children to the number of adults was $5: 2$.$] Before$ (When 133 more children joined in,] Change
the number of $\varepsilon_{\text {hildren }}$ was 6 times of the number of adults.] After How many children were at the carnival at first?
C

$$
\begin{aligned}
12 u-5 u & =133 \\
7 u & =133 \\
1 u & =133 \div 7 \\
& =19 \\
5 u & =5 \times 19 \\
& =95 \\
\text { Ans } & : 95
\end{aligned}
$$

GUIDED EXAMPLE 6

There was 1.5 times as many apples as oranges in a fruit stall.] ${ }^{3}$. $1.5=\frac{3}{2}$
(After 21 apples were sold,] Change
there was 3 times as many oranges as apples left.] After
How many fruits were there in the stall at first?

$$
\begin{aligned}
9 u-2 u & =21 \\
7 u & =21 \\
1 u & =21 \div 7 \\
& =3 \\
15 u & =15 \times 3 \\
& =45 \\
\text { Ans } & : 45
\end{aligned}
$$

BUILD YOUR UNDERSTANDING

1. Samantha had two pieces of ribbons, A and B.
[Ribbon A had the same length as Ribbon B.] Before
[After she used 86.8 cm of Ribbon A,] Change
(the length of Ribbon B was 8 times as long as the length of Ribbon A.] After Find the total length of ribbons A and B at first?

$$
\begin{aligned}
8 u-1 u & =86.8 \\
7 u & =86.8 \\
1 u & =86.8 \div 7 \\
& =12.4 \\
16 u & =16 \times 12.4 \\
& =198.4
\end{aligned}
$$

Ans: 198.4 cm
Rope B unchanged
2. $\left[\begin{array}{l}\frac{1}{2} \text { of the children in the funfair were girls and the rest were boys. } \\ \left.{ }^{4} \text { When } 8 \text { giris left the funfair, }\right] \text { Chamger }\end{array}\right]$ Betore $4,8, \sqrt{12}$ the number of girs decreased to $\frac{1}{7}$ of the total nymber of children.] After How many children were at the playground at first?
$\left.\begin{array}{c|c|c|c} & G & B & \text { Totul } \\ \hline B & 1 \times 3 \downarrow \\ 3 u\end{array} \begin{array}{c}4 \times 3, \\ 12 u\end{array} \begin{array}{c}5 \times 3, \\ 15 u / 2\end{array}\right]$

$$
\begin{aligned}
3 u-2 u & =8 \\
1 u & =8 \\
15 u & =15 \times 8 \\
& =120
\end{aligned}
$$

Boys unchanged Make Bous the same
3. Nigel and Reuben share a sum of money in the ratio of 4:5.] Before Change After Reuben gave away \$457, The had \$1538 left.] After Find the sum of money Nigel and Reuben had at first.

	N	R	Total
B	$4 u$	A_{u}	$9 u$
C		-457	
A		1538	

$$
\begin{aligned}
5 u & =1538+457 \\
& =1995 \\
l_{u} & =1995 \div 5 \\
& =399 \\
q_{u} & =9 \times 399 \\
& =3591
\end{aligned}
$$

Ans: $\$ 3591$
4. [Jenntand Sandy had some stickers in the ratio of $3: 5$.] Before (After Sandy gave away 42 stickers,] Change
the ratio of the number of stickers between Jenna ${ }^{2}$ and Sandy became 2:1.] After How many stickers did Jenna have?

$$
\begin{aligned}
10 u-3 u & =42 \\
7 u & =42 \\
1 u & =42 \div 7 \\
& =6 \\
6 u & =6 \times 6 \\
& =36
\end{aligned}
$$

Ans: 36
Make J the same
5. Mrs Lim baked 3 times as many chicken pies as apple pies. If she had baked 60 fewer chicken pies, she would have baked twice as many apple pies as chicken pies.
a) How many chicken pies did she bake?
b) How many apple pies did she bake?
6. Mr. Lim bought a total of 126 red and blue pens.
$\frac{1}{3}$ of them were red. Some red pens were sold
and the number of red pens remaining was $\frac{2}{7}$ the number of blue pens.
How many red pens were sold?

