Higher Order Thinking Skills Primary 5

Lesson 8:
Geometry

enquiry@mathsheuristics.com
www.mathsheuristics.com
www.facebook.com/mathsheuristics

LESSON 8 Geometry (I)

Properties of Angles

1. Angle on a straight line:
$\angle \mathrm{a}+\angle \mathrm{b}=180^{\circ}$

2. Vertically opposite angles:

$$
\begin{aligned}
& \angle a=\angle b \\
& \angle c=\angle d
\end{aligned}
$$

3. Angles at a point:

$$
\angle \mathrm{a}+\angle \mathrm{b}+\angle \mathrm{c}+\angle \mathrm{d}+\angle \mathrm{e}+\angle \mathrm{f}=360^{\circ}
$$

4. Alternate Angles

$$
\angle a=\angle b
$$

5. Corresponding Angles
$\angle a=L b$

6. Interior Angles between parallel lines

$$
\angle \mathrm{a}+\angle \mathrm{b}=180^{\circ}
$$

7. RHOMBUS:

```
Opposite sides are
\(A B=B C=C D=A D\)
``` \(\qquad\)
``` parallel
\(\angle a=\angle c\)
\(\angle b=\angle d\)
\(\angle \mathrm{a}+\angle \mathrm{d}=180^{\circ}\)
\(\angle \mathrm{b}+\angle \mathrm{c}=180^{\circ}\)
\(\angle a+\angle b=180^{\circ}\)
\(A B D, B C D, A D C\) and \(A B C\) are isosceles \(\triangle s\)
``` .

8. PARALLELOGRAM:
```

Opposite sides are

``` \(\qquad\)
```

parallel

$$
A B=C D
$$

$A D=B C$
$\angle a=\angle C$
$\angle b=2 d$
$\angle a+\angle b=180^{\circ}$
$\angle b+\angle c=180^{\circ}$
$\angle \mathrm{c}+\angle \mathrm{d}=180^{\circ}$
$\angle a+\angle d=180^{\circ}$

```

9. TRAPEZIUM:

One pair of parallel sides; \(A D / / B C\)
\(\angle a+\angle b=180^{\circ}\)
\(\angle c+\angle d=\)

GUIDED EXAMPLE 1

A rectangular piece of paper is folded as shown.
Find:
a) \(4 x\)
b) \(4 y\)

(MGS PS)
\[
\begin{aligned}
\text { a) } \angle x & =180^{\circ}-42^{\circ}-90^{\circ} \\
& =48^{\circ} \\
\text { b) } \angle y & =180^{\circ}-42^{\circ}-42^{\circ} \\
& =96^{\circ}
\end{aligned}
\]
\[
\text { b) } 96^{\circ}
\]

GUIDED EXAMPLE 2
In the figure below, ABC is a straight line.
CBE is an isosceles triangle,?
\(C B\) and \(D E\) are parallel lines.
Find \(\Varangle \mathrm{a}\).
(RGPS PF)

\[
\begin{aligned}
\angle C E D & =180^{\circ}-47^{\circ}-107^{\circ} \\
& =26^{\circ} \\
& =\angle E C B \quad(\text { alt. } \angle s) \\
\angle C B E & =180^{\circ}-26^{\circ}-26^{\circ} \\
& =128^{\circ} \\
\angle a & =180^{\circ}-128^{\circ} \quad \text { Ans: } 52^{\circ} \\
& =52^{\circ}
\end{aligned}
\]

GUIDED EXAMPLE 3

The diagram below, not drawn to scale, is made up of 2 overlapping triangles WXZ and WYZ. Find the sum of \(\Varangle a, ~ \Varangle b, ~ \Varangle c\) and \(\Varangle d\).

(Nan Ha P5 CA 2)
Not possible to find individual angles \(\rightarrow\) use grouping
\[
\begin{aligned}
\angle a+\angle b & =180^{\circ}-60^{\circ} \\
& =120^{\circ} \\
\angle c+\angle d & =180^{\circ}-65^{\circ} \\
& =115^{\circ} \\
& =120^{\circ}+115^{\circ} \\
\text { Sequined sum } & =235^{\circ}
\end{aligned}
\]

GUIDED EXAMPLE 4

In the figure below, ADHE, ADCB and EHGF are trapeziums.
[APE and BGC are isosceles triangles.]
\(\Varangle A D H=64^{\circ}\).
a) Find \(\Varangle x\).
b) Find \(\Varangle y\).

(Henry Park P5 SA2 2014)
b) \(122^{\circ}\)

\section*{GUIDED EXAMPLE 5}

In the figure below, not drawn to scale, \(A B C\) is an equilateral triangle and \(A C G\) is an isosceles triangle. [BCF, DCG and \(A C E\) are straight lines.] \(\Varangle C D F=20^{\circ}\) and \(\Varangle F C G=50^{\circ}\).
a) Find \(\Varangle C A G\)
b) Find \(\Varangle C F E\)
(ACS P5 SA2)

\section*{BUILD YOUR UNDERSTANDING}
1. A rectangular piece of paper is folded as shown below. Find
a) \(\quad \angle x\)
b) \(\quad \angle y\)
(Henry Park Pri/P6 Prelim/Q44)

2. In the figure below, not drawn to scale, PQRS is a trapezium and TVW is an isosceles triangle.
a) Find \(\Varangle a\).
b) Find \(\Varangle b\).

(Tao Nan P5 SA2)
a)
\[
\begin{aligned}
\angle a & =180^{\circ}-50^{\circ} \\
& =130^{\circ}
\end{aligned}
\]
\[
\text { b) } \begin{aligned}
\angle b & =\angle T W V(\text { alt. } \angle s) \\
& =\left(180^{\circ}-62^{\circ}\right) \div 2 \\
& =59^{\circ}
\end{aligned}
\]
\[
\text { Ans: a) } 130^{\circ}
\]
b) \(59^{\circ}\)
3. In the figure below, line \(A C\) is parallel to line FH . Line GC cuts \(\Varangle D G H\) into half. \(B H\) is a straight line. Given that \(\Varangle A B D=56^{\circ}\) and \(\Varangle B E C=64^{\circ}\), find:
a) the value of \(\Varangle x\) and
b) the value of \(\Varangle y\)

(SCGS P5 SA 2)
a)
\[
\begin{aligned}
\angle x & =\left(180^{\circ}-64^{\circ}\right) \div 2 \\
& =58^{\circ}
\end{aligned}
\]
b)
\[
\begin{aligned}
& \angle D G E=\angle x \\
&=58^{\circ} \\
& 180^{\circ}-58^{\circ}-58^{\circ}=64^{\circ} \\
& \angle y=56^{\circ}+64^{\circ} \\
&=120^{\circ}
\end{aligned}
\]

Aus: a) \(58^{\circ}\)
b) \(120^{\circ}\)

P5 Module: Higher Order Thinking Skills
4. The figure below is not drawn to scale.

ABCD is a parallelogram.
AFC is a straight line.
\(A F=A E\) and \(C F=C G\).
\(\Varangle A D G=76^{\circ}\) and \(\Varangle B A C=31^{\circ}\).
a) Find \(\Varangle D E F\).
b) Find \(\Varangle E F G\).

(Nanyang P5 SA2)
\[
\text { a) } \begin{aligned}
\angle D A F & =180^{\circ}-76^{\circ}-31^{\circ} \\
& =73^{\circ} \\
\angle A E F & =\left(180^{\circ}-73^{\circ}\right) \div 2 \\
& =53.5^{\circ} \\
\angle D E F & =180^{\circ}-53.5^{\circ} \\
& =126.5^{\circ}
\end{aligned}
\]
\[
\text { b) } \begin{aligned}
\angle G F C & =\left(180^{\circ}-31^{\circ}\right) \div 2 \\
& =74.5^{\circ} \\
\angle E F G & =180^{\circ}-53.5^{\circ}-74.5^{\circ} \\
& =52^{\circ}
\end{aligned}
\]

Ans: a) \(126.5^{\circ}\)
b) \(52^{\circ}\)
5. In the figure below, \(W X Y Z\) is a square which is made up of 9 identical squares. Find the sum of \(\Varangle \boldsymbol{a}, \Varangle \boldsymbol{b}\) and \(\Varangle \boldsymbol{c}\).

(Henry Park P5 SA2)
\[
\begin{aligned}
\angle a+\angle c & =90^{\circ} \\
\angle b & =45^{\circ} \\
\text { Required sum } & =90^{\circ}+45^{\circ} \\
& =135^{\circ} \quad \text { Aus: } 135^{\circ}
\end{aligned}
\]
6. In the figure below, not drawn to scale, \(A B C E\) is a square and EDC is an equilateral triangle.
Find \(\angle x\).
(ACS P5 SA2 Paper 2 Q16)

Observe that \(B C=C D\)
\(\therefore \triangle B C D\) is isosceles.
\[
\begin{aligned}
& \angle D B C=\left(180^{\circ}-90^{\circ}-60^{\circ}\right) \div 2 \\
& =15^{\circ} \\
& 180^{\circ}-15^{\circ}-90^{\circ}=75^{\circ} \\
& \angle x=180^{\circ}-75^{\circ} \\
& =105^{\circ} \\
& \text { Ans: 105 }
\end{aligned}
\]

P5 Module: Higher Order Thinking Skills
7. In the figure below (not drawn to scale), \(A F / / B G\) and \(C D / / A B\).

Find
(a) \(\angle A B C\)
(b) \(\angle E D C\)
(Christian Brothers' School/P6 Prelim/Q41)

\[
\text { a) } \begin{aligned}
\angle A B C & =\angle G C D \quad \text { (corr. } \angle s) \\
& =65^{\circ}
\end{aligned}
\]
\[
\text { b) } \begin{aligned}
180^{\circ}-125^{\circ} & =55^{\circ} \\
\angle F D C & =55^{\circ}+65^{\circ} \\
& =120^{\circ}
\end{aligned}
\]

Ans:
a) \(65^{\circ}\)
b) \(120^{\circ}\)```

