Secondary 2 Mathematics | Lesson 7

Expansion and Factorisation of Algebraic Expressions

Learning objectives:

- Factorise quadratic expressions
- Factorise algebraic expressions of the form ab + ad + bc + bd

Prerequisites:

Expand and factorise linear expressions

Factorisation is the reverse of expansion.

Guided Example 1 – Factorising linear expressions (Recap)

Factorise each of the following expressions completely.

a) 12x + 8 b) -15x - 25 c) -27ax + 12ay d) 36p - 54pq + 18pr

Exercise 1

Factorise each of the following expressions completely.

a) 21 + 35a b) -8 - 20p c) -42xy - 12xz d) -9z - 24bz - 15cz

Guided Example 2 - Factorising expressions involving squares and cubes

Factorise each of the following expressions completely.

a) $10x^2 + 8x$ b) $-49b - 28b^2$ c) $x^2yz^3 - yz^2$

Exercise 2

Factorise each of the following expressions completely.

a) $10a^2 - 15a$ b) $2\pi r^2 + 2\pi rh$ c) $c^2d^3 + c^3d^2 - c^2d^2$

How to factorise quadratic expressions using the multiplication frame

Let us start with expansion of a relatively simple expression,

(x + 2)(x + 3)= $x^{2} + 3x + 2x + 6$ = $x^{2} + 5x + 6$

How do we factorise $x^2 + 5x + 6$?

Breaking down $x^2 + 5x + 6$ into $x^2 + 3x + 2x + 6$ allows us to factorise by grouping more easily. However, there are certain constraints in how the *bx* term must be broken down into its sum pairs, and the sum pairs are often not immediately obvious. We can see that the ax^2 and *c* terms remain unchanged.

There is some trial and error involved. Be calm in execution because it can get frustrating.

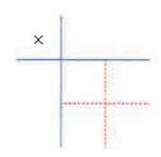
Write the x² and +6 terms in their respective boxes.
How did the x² and +6 come about?

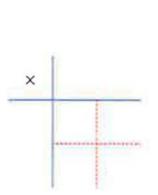
They were obtained after being multiplied by a particular factor pair. We will need to use consider their possible factor pairs using listing.

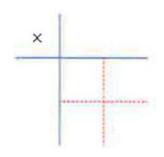
$$x^{2} = x \times x \qquad 6 = 1 \times 6 = (-1) \times (-6) = 2 \times 3 = (-2) \times (-3)$$

When *a* in the ax^2 term is 1 or prime, or when *c* is 1 or prime, listing factor pairs becomes convenient.

- 2) Fix either the ax^2 factors or the *c* factors first, then use trial and error. Since $x^2 = x \times x$, there is only one unique combination and they can be listed out first. Now, we need to put in numbers into these 2 boxes and they must fulfill these conditions:
 - i) They must be numbers of a factor pair of 6
 - ii) The product of the numbers and the *x* term must sum up to bx. In this case, +5x.





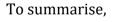


3) Filter out possibilities with reasoning.

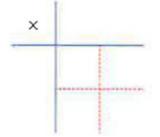
Based on the factor pairs of 6, there are 4 unique combinations. To get a sum pair of +5x, we can reason that both factors must be positive. That leaves us with 1×6 and 2×3 to consider.

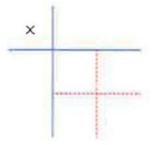
If we were to test out (x + 1)(x + 6), this yields $x^2 + 6x + x + 6 = x^2 + 7x + 6$, but $+7x \neq +5x$. \therefore this combination does not work.

If we were to test out (x + 2)(x + 3), this yields $x^{2} + 3x + 2x + 6 = x^{2} + 5x + 6$, and the *bx* term is +5x. \therefore this combination works.



- 1) Break down the ax^2 and *c* term into their factor pairs.
- 2) Find a combination such that the product of the terms involving *x* add up to *bx*.





Guided Example 3 – Factorising expressions using Multiplication Frame

Factorise each of the following quadratic expressions.

a) $x^2 + 6x + 5$ b) $x^2 - x - 12$

Exercise 3

Factorise each of the following quadratic expressions.

a) $x^2 + 2x - 15$ b) $x^2 + 5x - 14$

Guided Example 4 – Factorising expressions using Multiplication Frame

Factorise each of the following quadratic expressions.

a) $2x^2 + 7x + 6$ b) $6y^2 - 11y + 4$

Exercise 4

Factorise each of the following quadratic expressions.

a) $3x^2 + 10x - 8$ b) $7 - 13x - 2x^2$

Two expressions are equivalent if and only if the coefficients of each term are the same.

If $a_1x^2 + b_1x + c_1 = a_2x^2 + b_2x + c_2$, then $a_1 = a_2$, $b_1 = b_2$ and $c_1 = c_2$ and if $a_1 = a_2$, $b_1 = b_2$ and $c_1 = c_2$, then $a_1x^2 + b_1x + c_1 = a_2x^2 + b_2x + c_2$.

Guided Example 5 - Checking whether two expressions are equivalent

Without expanding (2x + 3)(x - 5) completely, and without factorising $3x^2 - 18x + 15$, explain why the two expressions are not equivalent.

Exercise 5

Dina says that (y - 2)(2y + 1) and $4y^2 + 7y - 2$ are equivalent because the constant term of (y - 2)(2y + 1) is also -2. Without expanding or factorising the expressions, explain if you agree with this statement.

Guided Example 6 – Factorising quadratic expressions in two variables using multiplication frame

Factorise each of the following expressions completely.

a) $x^2 + 2xy - 8y^2$ b) $6x^2 + 11xy + 5y^2$

Exercise 6

Factorise each of the following expressions completely.

a) $x^2 - 2xy - 15y^2$

b) $6x^2 - 21xy + 18y^2$

Guided Example 7 – Factorising algebraic expressions into the form (a + b)(c + d)

Factorise each of the following expressions completely.

a) ab + ac + 2bd + 2cdb) 6ax - 20by - 8bx + 15ay

Exercise 7

Factorise each of the following expressions completely.

a) 3pq + 7rs + 3pr + 7qs b) 3hp - 12kq + 18kp - 2hq

Guided Example 8 – Factorising algebraic expressions into the form (a + b)(c + d)Find the two factors in 6xy - 15x + 20 - 8y.

Exercise 8

Find the two factors in 6ab - 9ac + 21c - 14b.

Guided Example 9 – Factorising quadratic expressions by grouping

Factorise $x^2 + xy - 3x - 3y$ completely.

Exercise 9

Factorise $15w^2 - 20w - 6wz + 8z$ completely.

Guided Example 10 - Applications

By factorising the expression $3x^2 + 26x + 51$, find two factors of 32651.

Exercise 10

Factorise $4x^2 + 13x + 3$ and use your result to find the prime factors of 41303.

Additional Practice for Self-Revision

Additional Practice 1

Factorise each of the following expressions completely.

a) $a^2 + 20a + 75$ b) $b^2 + 19b + 18$

c) $c^2 - 11x + 28$

d) $d^2 - 21d + 68$

Additional Practice 2

Factorise each of the following expressions completely.

a) $6a^2 + 31a + 5$ b) $8b^2 + 30b + 27$

c) $4c^2 - 25c + 6$

d) $9d^2 - 36d + 32$

Additional Practice 3

Factorise each of the following expressions completely.

a) $a^2 + 7ab + 6b^2$ b) $c^2 + 11cd - 12d^2$

c) $2d^2 - de - 15e^2$

d) $6f^2 - 29fg + 28g^2$

Additional Practice 4

Factorise each of the following expressions completely.

a) $p^2 + pq + 3qr + 3pr$ b) 3xy + 6y - 5x - 10

c)
$$x^2z - 4y - x^2y + 4z$$

d) $x^3 + xy - 3x^2y - 3y^2$

Question	Final Answer	Question	Final Answer
1a	(a + 15)(a + 5)	3a	(a+b)(a+6b)
1b	(b+18)(b+1)	3b	(c+12d)(c-d)
1c	(c-7)(c-4)	3c	(2d+5e)(d-3e)
1d	(d - 17)(d - 4)	3d	(3f - 4g)(2f - 7g)
2a	(6a + 1)(a + 5)	4a	(p+3r)(p+q)
2b	(4b+9)(2b+3)	4b	(3y-5)(x+2)
2c	(4c-1)(c-6)	4c	$(x^2+4)(z-y)$
2d	(3d - 8)(3d - 4)	4d	$(x^2+y)(x-3y)$

